
Frame delineation behavior of H.264 in libwebrtc

We’ve encountered an issue where incomplete frames can sometimes be forwarded
from the PacketBuffer to the FrameBuffer due to incorrect frame delineation. The
issue (as far as we can tell) is in the PacketBuffer::FindFrames function in
packet_buffer.cc.

From our understanding, the following lines in PacketBuffer::FindFrames (lines
271-277) will attempt to find continuous packets that start with a frame_begin (for
H.264 this is a S bit set to true) and end with frame_end .

 for (size_t i = 0; i < size_ && PotentialNewFrame(seq_num); ++i) {

 size_t index = seq_num % size_;

 sequence_buffer_[index].continuous = true;

 // If all packets of the frame is continuous, find the first packet

of the

 // frame and create an RtpFrameObject.

 if (sequence_buffer_[index].frame_end) {

In the above loop, we check to see if a packet could be a part of a frame to be
forwarded with a call to PotentialNewFrame() . This will, in general, return true if the
packet has a frame_begin or if we have a continuous sequence of packets before this
packet that starts with a frame_begin . Then, if the given packet also is the end of a
frame (frame_end) , we attempt to then use this frame.

One issue worth mentioning is that the frame_begin in H.264 is sometimes incorrect,
particularly for an H.264 frame with multiple slices, as the S bit is set on the first packet
of a slice, not necessarily the first packet of a given frame. For example, let’s say there’s
a frame with 6 packets across 2 slices (slice 1: packets 1-3, slice 2: packets 4-6).
Packet 1 and 4 would both have a S bit set to true, and both would have frame_begin
set to true. With all the above lines of code, we could potentially attempt to use packets
4-6 as a frame, instead of all the packets 1-6 that actually make up the frame.

After libwebrtc finds a packet with frame_end , it will then search backwards and (for
VP8) will collect packets until it hits a packet with frame_begin , and then forward that
as a complete frame (lines 302-303).

 if (!is_h264 && sequence_buffer_[start_index].frame_begin)

 break;

https://chromium.googlesource.com/external/webrtc/+/branch-heads/71/modules/video_coding/packet_buffer.cc
https://chromium.googlesource.com/external/webrtc/+/branch-heads/71/modules/video_coding/packet_buffer.cc

On the other hand, for H.264, there’s a special workaround (lines 338-342) of using
timestamp to address the issue of frame_begin not always being the beginning of a
frame.

 if (is_h264 &&

 (!sequence_buffer_[start_index].used ||

 data_buffer_[start_index].timestamp != frame_timestamp)) {

 break;

 }

Issue of incorrect H.264 frame delineation under lossy network conditions

This above workaround is designed not to forward a frame starting with a
frame_begin (since it can be the start of a slice), but rather to forward all packets with
the same timestamp as a frame. This approach does work as long as there is no packet
loss, and packets are coming in sequential order. However, as soon as we have
missing packets, we can run into some serious issues.

For example, in the earlier example, if we’re using packets 4-6 as a frame, but packets
1-3 are present in the packet_buffer , packets 1-6 will all have the same timestamp
and will all be correctly forwarded as a frame. However, if we’re missing packet 2, then
when we use packets 4-6 as a frame, we will try to find packets with the same
timestamp (going backwards in sequence number). We’ll find packet 3, but not find
packet 2 since it’s missing, so we end up forwarding packets 3-6 as an incomplete
frame (which doesn’t contain packets 1 and 2).

Our proposal for H.264 frame delineation

We’ve tried to fix this workaround ourselves by trying to use first_mb_in_slice to
more accurately determine the first packet of a given frame (following the guidance from
https://bugs.chromium.org/p/webrtc/issues/detail?id=7106). From what we can see, a
packet with first_mb_in_slice == 0 and S bit == true will always be the first
packet of a frame’s slice packets. However, there might be aud/sps/pps/sei/vui
packets in front, so we don’t believe using first_mb_in_slice == 0 and S bit
== true is an effective approach to resolve the issue.

Instead we’ve implemented a simple (and perhaps a naive workaround) that utilizes the
frame_end of the previous frame. As long as media packets’ sequence numbers are
continuous (which is not the case for ULPFEC, but true for FlexFEC), we can make the
assumption that the seq_num of the first packet of the next frame is just the seq_num of
the last packet of the current frame plus one. This actually seems to work well for us,
and can handle packet loss well. The below code sample provides how we could
modify PotentialNewFrame() (lines 242-266) to accomplish this.

https://bugs.chromium.org/p/webrtc/issues/detail?id=7106
https://bugs.chromium.org/p/webrtc/issues/detail?id=7106

 bool PacketBuffer::PotentialNewFrame(uint16_t seq_num) const {

 size_t index = seq_num % size_;

 int prev_index = index > 0 ? index - 1 : size_ - 1;

 if (!sequence_buffer_[index].used)

 return false;

 if (sequence_buffer_[index].seq_num != seq_num)

 return false;

 if (sequence_buffer_[index].frame_created)

 return false;

 if (sequence_buffer_[index].frame_begin)

 return true;

+ if (sequence_buffer_[prev_index].seq_num !=

+ static_cast<uint16_t>(sequence_buffer_[index].seq_num - 1)) {

+ return false;

+ }

+ if (sequence_buffer_[prev_index].frame_end) {

+ return true;

+ }

 if (!sequence_buffer_[prev_index].used)

 return false;

 if (sequence_buffer_[prev_index].frame_created)

 return false;

- if (sequence_buffer_[prev_index].seq_num !=

- static_cast<uint16_t>(sequence_buffer_[index].seq_num - 1)) {

- return false;

- }

 if (sequence_buffer_[prev_index].continuous)

 return true;

 return false;

 }

This is something we would like to provide a patch soon for, and we’d love to get the
discussion started.

